Identification and characterization of merozoite surface protein 1 epitope

نویسندگان

  • Satarudra Prakash Singh
  • Bhartendu Nath Mishra
چکیده

Malaria is an important tropical infection which urgently requires intervention of an effective vaccine. Antigenic variations of the parasite and allelic diversity of the host are main problems in the development of an effective malaria vaccine. Cytotoxic T lymphocytes (CTL) directed against Plasmodium falciparum-derived antigens are shown to play an important role for the protection against malaria. The merozoite surface protein 1 (MSP1) is expressed in all the four life-cycle stages of Plasmodium falciparum and did not find any sequence similarity to human and mouse reference proteins. MSP1 is a known target of the immune response and a single CTL epitope binding to the HLA-A*0201 is available for merozoite form. Here, we report the results from the computational characterization of MSP1, precursor (1720 residue) and screening of highest scoring potential CTL epitopes for 1712 overlapping peptides binding to thirty four HLA class-I alleles and twelve HLA class-I supertypes (5 HLA-A and 7 HLA-B) using bioinformatics tools. Supertypes are the clustered groups of HLA class-I molecules, representing a sets of molecules that share largely overlapping peptide binding specificity. The prediction results for MSP1 as adhesin and adhesin-like in terms of probability is 1.0. Results also show that MSP1 has orthologs to other related species as well as having non allergenicity and single transmembrane properties demonstrating its suitability as a vaccine candidate. The predicted peptides are expected to be useful in the design of multi-epitope vaccines without compromising the human population coverage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mass spectrometric identification of an HLA-A*0201 epitope from Plasmodium falciparum MSP-1.

Cytotoxic T lymphocytes (CTL) directed against Plasmodium falciparum-derived antigens were shown to play an important role for the protection against malaria. Although several CTL epitopes have been identified from P. falciparum sporozoite-derived antigens, none has been described for the merozoite form. Since the merozoite surface protein (MSP)-1 is a known target of the immune response, we fo...

متن کامل

Identification and characterization of epitopes on Plasmodium knowlesi merozoite surface protein-142 (MSP-142) using synthetic peptide library and phage display library.

Plasmodium knowlesi can cause potentially life threatening human malaria. The Plasmodium merozoite surface protein-142 (MSP-142) is a potential target for malaria blood stage vaccine, and for diagnosis of malaria. Two epitope mapping techniques were used to identify the potential epitopes within P. knowlesi MSP-142. Nine and 14 potential epitopes were identified using overlapping synthetic pept...

متن کامل

Genetic Diversity Block 2 of Surface Protein-1 in Plasmodium Falciparum Merozoite by Nested-PCR Method in Southeastern Iran

Abstract       Background and Objectives: Plasmodium falciparum merozoite surface protein-1 (PfMSP-1) is a promising vaccine against malaria during its blood stages which play an important role in immunity to this disease. Polymorphic nature of this gene is a major obstacle in making an effective vaccine against malaria. In this study, the genetic diversity of Plasmodi...

متن کامل

Plasmodium vivax promiscuous T-helper epitopes defined and evaluated as linear peptide chimera immunogens.

Clinical trials of malaria vaccines have confirmed that parasite-derived T-cell epitopes are required to elicit consistent and long-lasting immune responses. We report here the identification and functional characterization of six T-cell epitopes that are present in the merozoite surface protein-1 of Plasmodium vivax (PvMSP-1) and bind promiscuously to four different HLA-DRB1* alleles. Each of ...

متن کامل

In silico Identification and Validation of a Linear and Naturally Immunogenic B-Cell Epitope of the Plasmodium vivax Malaria Vaccine Candidate Merozoite Surface Protein-9

Synthetic peptide vaccines provide the advantages of safety, stability and low cost. The success of this approach is highly dependent on efficient epitope identification and synthetic strategies for efficacious delivery. In malaria, the Merozoite Surface Protein-9 of Plasmodium vivax (PvMSP9) has been considered a vaccine candidate based on the evidence that specific antibodies were able to inh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009